Copied to
clipboard

G = C122.C3order 432 = 24·33

2nd non-split extension by C122 of C3 acting faithfully

metabelian, soluble, monomial

Aliases: C62.2A4, C122.2C3, C4223- 1+2, C42⋊C92C3, C32.(C42⋊C3), (C4×C12).4C32, C22.(C32.A4), (C2×C6).9(C3×A4), C3.4(C3×C42⋊C3), SmallGroup(432,102)

Series: Derived Chief Lower central Upper central

C1C4×C12 — C122.C3
C1C22C42C4×C12C42⋊C9 — C122.C3
C42C4×C12 — C122.C3
C1C3C32

Generators and relations for C122.C3
 G = < a,b,c | a12=b12=1, c3=b4, ab=ba, cac-1=ab-1, cbc-1=a3b10 >

3C2
3C3
3C4
3C4
3C6
3C6
3C6
3C6
16C9
16C9
16C9
3C2×C4
3C12
3C12
3C12
3C2×C6
3C12
3C12
3C12
3C12
3C12
3C3×C6
163- 1+2
3C2×C12
3C2×C12
3C2×C12
3C2×C12
3C3×C12
3C3×C12
4C3.A4
4C3.A4
4C3.A4
3C4×C12
3C6×C12
4C32.A4

Smallest permutation representation of C122.C3
On 36 points
Generators in S36
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)
(1 9 5)(2 10 6)(3 11 7)(4 12 8)(13 24 18 23 17 22 16 21 15 20 14 19)(25 36 35 34 33 32 31 30 29 28 27 26)
(1 26 14 9 34 18 5 30 16)(2 35 21 10 31 19 6 27 23)(3 32 17 11 28 15 7 36 13)(4 29 24 12 25 22 8 33 20)

G:=sub<Sym(36)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36), (1,9,5)(2,10,6)(3,11,7)(4,12,8)(13,24,18,23,17,22,16,21,15,20,14,19)(25,36,35,34,33,32,31,30,29,28,27,26), (1,26,14,9,34,18,5,30,16)(2,35,21,10,31,19,6,27,23)(3,32,17,11,28,15,7,36,13)(4,29,24,12,25,22,8,33,20)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36), (1,9,5)(2,10,6)(3,11,7)(4,12,8)(13,24,18,23,17,22,16,21,15,20,14,19)(25,36,35,34,33,32,31,30,29,28,27,26), (1,26,14,9,34,18,5,30,16)(2,35,21,10,31,19,6,27,23)(3,32,17,11,28,15,7,36,13)(4,29,24,12,25,22,8,33,20) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36)], [(1,9,5),(2,10,6),(3,11,7),(4,12,8),(13,24,18,23,17,22,16,21,15,20,14,19),(25,36,35,34,33,32,31,30,29,28,27,26)], [(1,26,14,9,34,18,5,30,16),(2,35,21,10,31,19,6,27,23),(3,32,17,11,28,15,7,36,13),(4,29,24,12,25,22,8,33,20)]])

56 conjugacy classes

class 1  2 3A3B3C3D4A4B4C4D6A···6H9A···9F12A···12AF
order12333344446···69···912···12
size13113333333···348···483···3

56 irreducible representations

dim1113333333
type++
imageC1C3C3A43- 1+2C3×A4C42⋊C3C32.A4C3×C42⋊C3C122.C3
kernelC122.C3C42⋊C9C122C62C42C2×C6C32C22C3C1
# reps16212246824

Matrix representation of C122.C3 in GL3(𝔽13) generated by

700
020
001
,
1000
020
002
,
009
900
010
G:=sub<GL(3,GF(13))| [7,0,0,0,2,0,0,0,1],[10,0,0,0,2,0,0,0,2],[0,9,0,0,0,1,9,0,0] >;

C122.C3 in GAP, Magma, Sage, TeX

C_{12}^2.C_3
% in TeX

G:=Group("C12^2.C3");
// GroupNames label

G:=SmallGroup(432,102);
// by ID

G=gap.SmallGroup(432,102);
# by ID

G:=PCGroup([7,-3,-3,-3,-2,2,-2,2,63,169,1515,360,10399,102,9077,15882]);
// Polycyclic

G:=Group<a,b,c|a^12=b^12=1,c^3=b^4,a*b=b*a,c*a*c^-1=a*b^-1,c*b*c^-1=a^3*b^10>;
// generators/relations

Export

Subgroup lattice of C122.C3 in TeX

׿
×
𝔽